google-site-verification: google49c42144e3c1b27a.html

GIVE US A CALL: 01436-670-806

Shopping Cart £0.00

You have no items in your shopping cart.

GIVE US A CALL: 01436-670-806

Menu

Details

Our d24 is based on the deltoidal icositetrahedron. The d24 dice currently on the market are tetrakis hexahedra, in which each face of a cube is replaced by a square pyramid. The faces of this polyhedron are relatively wide and short triangles (not ideal for numbering), and there are more esthetically-appealing icositetrahedra. The deltoidal version is probably the most attractive one that possesses parallel opposing faces. It has eight groups of three faces, six groups of four faces meeting along long edges, and twelve groups of four faces with two long and two short edges meeting. Due to the large number of possibilities for distributing the numbers, Henry wrote code to determine the optimum numbering. He found 86 solutions which perfectly balance the sums for the first two types of groups. Of these, the best balancing of the other twelve quadruples has sums ranging from 44 to 56 (4 x 12.5 = 50).

Write Your Own Review

Only registered users can write reviews. Please, log in or register

Use spaces to separate tags. Use single quotes (') for phrases.

Deltoidal d24

In stock

Product code: 006921
£2.99
Our d24 is based on the deltoidal icositetrahedron. The d24 dice currently on the market are tetrakis hexahedra, in which each face of a cube is replaced by a square pyramid. The faces of this polyhedron are relatively wide and short triangles (not ideal for numbering), and there are more esthetically-appealing icositetrahedra. The deltoidal version is probably the most attractive one that possesses parallel opposing faces. It has eight groups of three faces, six groups of four faces meeting along long edges, and twelve groups of four faces with two long and two short edges meeting. Due to the large number of possibilities for distributing the numbers, Henry wrote code to determine the optimum numbering. He found 86 solutions which perfectly balance the sums for the first two types of groups. Of these, the best balancing of the other twelve quadruples has sums ranging from 44 to 56 (4 x 12.5 = 50).
OR
Free Shipping

Free next day delivery on all orders over £75, ordered before 12pm, UK mainland only.  For other destinations please contact us

Additional Information
Featured Product N/A